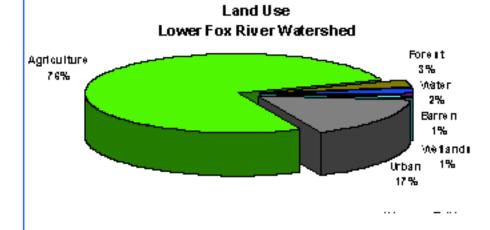


Lower Fox River Watershed

Hydrologic Unit Codle: 04030204

Watershed Contacts

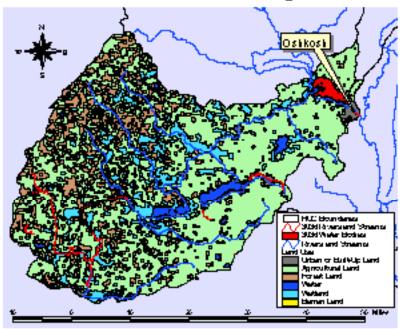

- The University of Wisconsin-Extension http://clean-water.uwexedu/ foxwolf/
- Fox Wolf Watershed Aliance http://www.fwb2k.org/
- Lake Michigan Forum http://www.kmichiganforum.org/
- Bob Behrens, the Lower Fox River Water Basin Team Leaderbehrer@dnr.state.wiys

For more information, see the Wisconsin Department of Natural Resources'
"Wisconsin's Basins" website at http://dnr.wi.gov/org/gmu/gmu/html and the
USEP A "Surf Your Watershed "website at http://cfpub.epa.gov/surf/huc.cfm?
huc code=04030204

Watershed Overview / Ecology / Biodiversity

- Recreational highlights include witalife watching, hiking, fishing, hunting, bicycling, horseback riding, snowmobiling, skiing, camping, picnicking, and water sports.
- The Lower Fox River originates at the outlet of Lake Winnebago and flows northeast for 39 miles where it empties into the bay of Green Bay.
- With an average daily flow of 4,320 cubic feet of water persecond, the Lower Fox River is characterized as a large, non-wadeable, lowtransparency river in terrupted by a series of locks and dams.
- Much of the drinking water in the basin is derived from groundwater.
 However, the City of Green Bay receives its drinking water from Lake Michigan. Various basin communities are reviewing alternatives for drinking water as the basin's aquifer declines.
- Numerous endangered, threatened and otherwise rare species exist in the basin, including the endangered Bam Owland the threatened Small White Lady's Slipper.
- The main stem of the Fox River in the Lower Fox River Basin is fragmented by a series of 17 locks and 12 dams that were built in the mid 1800's to aid navigation or produce power.
- The Oneida Reservation, established by an 1838 Treaty, is in the basin.
 It is participating in the State's priority watershed program and the WICAC.
- Wildlife include song birds, white-tailed deer, rabbits, red fox, coyote, pheasant, Hungarian partridge, squirrel, skunk, raccoon, upland game birds, waterfowt, bats, small mammals and invertebrates, reptiles, amphibians and many others.
- The Lower Fox River Basin encompasses three of the state's ecological landscapes: Northern Lake Wichigan Coastal, Southeast Glacial Plains, and Northeast Plains.
- Wildlife diversity and populations are affected by the variability of habitats within the basin. The two main terrestrial habitats within the basin are open land and woodland. Aquatic habitats within the area are wetland, riverine, and lacustrine (lakes or lake-like).
- Open land consists of cropland, orchards, pastures, and meadows, and comprises the largest type of habitat within 0.5 mile of the Lower Fox River. Woodland habitat includes hardwood and conifer forest land and wooded lots with an associated understory of shrubs, grasses, legumes, and herbaceous plants.

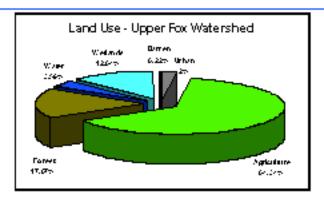
- The Wisconsin Department of Natural Resources manages the watershed as
 part of the Lower Fox River management area that also includes a portion
 of the Duck-Pensaukee watershed. Environmental concerns include:
 - Habitat loss, deterioration and fragmentation from rapid development and conversion of rural lands.
 - Water quality problems from contaminated sediment, runoff in urban and agricultural areas, floodplain development and overuse of groundwater supplies (with groundwater quality implications).
 - Heavy recreational use of resources, such as takes and shorelines;
 - Bxotic species are a continuing emerging problem. Plant species such as reed canary grass, purple loosestrife, buckthorn, gartic mustard and Burasian water miltoil quickly out-compete native species and affect ecosystem balance. Zebra mussels and rusty crayfish are spreading, disrupting stream and lake ecology.
 - Monitoring of wildlife populations, water quality, and ecosystem function are needed to understand the status and trends of resources.
- The main priorities identified in the integrated management plan include:
 - horease and protect critical habitats and habitat integrity.
 - Sustain a diverse, balanced and health yecosystem;
 - Improve surface water and groundwater quality and identify water conservation opportunities;
 - Btablish a self-sustaining, balanced, and diversified edible fish community;
 - Manage resources for multiple users;
 - Strengthen program support and enforcement initiatives; and
 - Improve educational programs.


Waterbody Name	Impairment	TMDL Submitted
Apple Creek *	Nutrients	NA
	Flow Atteration(%)	
	Loss Of Instream Habitat	
	Organic Enrichment/Low Dissolved Oxygen	
	Bediment	
	Temperature	
Apple Creek *	Nutrients	NA
	Row Alteration(%)	
	Loss Of Instream Habitat	
	Organic Enrichment/Low Dissolved Oxygen	
	Sediment	
	Temperature	
Dutchman Creek	Nutrients	NA
Date IIII dii Dicck	Ammonia	
Bast River * *	Nutrients	NA
DELI KINCI	Turbidity	no
	Fish Consumption Advisories (PCBs)	
	Fish Kills	
	Loss Of Instream Habitat	
	Organic Enrichment/Low Dissolved Oxygen	
	Bediment	
	Toxics	
Bast River **	Noticents	NA
	[urbidity	
	fish Kills	
	Loss Of Instream Habitat	
	Organic Enrichment/Low Dissolved Oxygen	
	Sediment	
Fox River	Fish Consumption Advisories (PCBs)	NA
	Organic Enrichment/Low Dissolved Oxygen	
Kanka pol Creek	Loss Of Instream Habitat	NA
Mud Creek	Loss Of Instream Habitat	NA
Neenah Slough	Fish Consumption Advisories (PCBs)	NA
	Organic Enrichment/Low Dissolved Oxygen	
Mum Creek	Loss Of Instream Habitat	NA
	Temperature	
Winne bago ta ke	Notifients	NA
	Fish Consumption Advisories (Vercury)	
	Fish Consumption Advisories (PCBs)	
	Organic Enrichment/Low Dissolved Oxygen	
	Bediment	

Upper Fox River Watershed

Hydrologic Unit Code: 04030201

For more information, see the Wisconsin Department of Natural Resources"
"Wisconsin's Basins" website at http://
dnr.wi.gov/org/gmu/gmu.html and the USEPA "Surf Your Watershed" website at http://cfpub.epa.gov/surf/huc.cfm? huc_code=04030201http://cfpub.epa.gov/surf/huc.cfm?huc_code=04030201

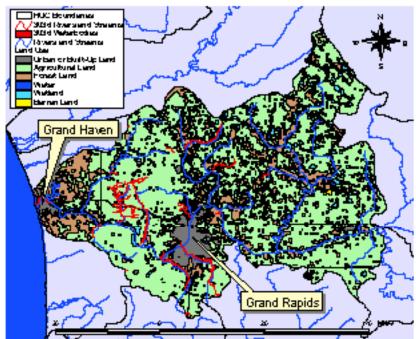

Watershed Contacts

- The University of Wisconsin-Extension http://clean-water.uwexedu/ foxwolf/
- Fox Wolf Watershed Aliance http://www.fwb2k.org/
- Lake Michigan Forum http://www.kmichiganforum.org/
- Rob McLennan, the Upper Fox River Water Basin Team Leader-Robin McLennan@dnr.state.wi.us

Watershed Overview / Ecology / Biodiversity

- The Upper Fox River basin is 1640 square miles, with 48 square miles of inland lakes.
- The watershed's primary land use is agricultural at 65 percent. Forests and wetlands provide significant land cover at 17 and 12 percent, respectively.
- Numerous endlangered, threatened and otherwise rare species exist in the basin, including the threatened White Lady's Slipper, a species that needs fens and calcareous wet prairies, and Forster's Tem, which needs large marshes, estularies and lake islands.
- Over 10% of the basin area is wetland greater than 40 acres in size, accounting for 145,428 acres. The total wetland area is actually much greater, as mapping identifies wetlands as small as 2 acres in size.
- There are over \$5,678 acres of major public lands in the Upper Fox management basin including \$1,311 acres of state witdlife, fisheries and park lands (not including the 11 state natural areas in the basin) and 4,367 acres of U.S. Fish and Wildlife Service witdlife refuge and waterfowt production acres.
- The Basin includes the Central Sand Ridges, Southeast Glacial Plains, and a small portion of the Central Sand Plains Ecological Landscapes.
- Most of the basin's cold water frout streams are located in the western
 portion of the basin near the Sandy Ridges ecosystem. Warm water
 rivers, streams and lakes support various game and non-game species
 including large and small mouth bass, walleye, northern pike, catfish
 and sturgeon.
- Common woodland wildlife include white-tailed deer, turkey, ruffed grouse; upland/grassland wildlife includes ring-necked pheasant, non-game songbirds (vesper sparrow, bobolink (right), meadowlark), grassland nesting waterfowl include mallards and blue-winged teal.
 Wetland species include various waterfowl, amphibians and reptiles.
- Oak- hickory is the most common forest type and the tree species with the greatest volume in the Upper Fox Basin is white oak followed by black and pin oak, white and red pine, aspen and soft maple.

- The Upper Fox River basin is part of the Wisconsin DNR's Upper Fox River basin management area, which also includes the Lake Winnebago watershed.
- There are a large number of dams on the Upper Fox River system.
 Several have been removed, including 2 on the Baraboo River. Data collected from the removal demonstrate that historical fish species have returned, and the population of exotic species declined.
- The Upper Fox watershed is home to the state's largest Wetland
 Reserve Restoration Program (WRP). Duffy's Marsh is a 1,732 acre
 wetland restoration project in Marquette County. There are over 60
 WRP contracts in the larger Upper Fox River management area (which
 also includes the Lake Winnebago watershed).
- The Upper Fox Basin Partnership held a workshop to identify concerns and issues facing natural resources in the basin. The three priorities isted beloware not ranked against each other, but rather, they rose to the top when compared to all of the other stressors affecting the natural resources of the basin and the uses of those resources by the public.
 - Wetland filling/ loss
 - Habitatios and fragmentation
 - Nutrient loading/ Nonpoint Source Pollution
- Other en viron men tal concerns include:
 - Water quality problems from contaminated sediments, runoff in urban and agricultural areas, floodplain development and overuse of groundwater supplies.
 - Riparian/wetland, woodland, and grassland habitat loss, deterioration, and fragmentation from rapid development and conversion of rural lands. Protection and maintenance of habitat is important for maintaining spatial and temporal ecosystem diversity critical for witdlife.
 - Grassland restoration is a major initiative, with virtually the entire
 historic prairie, sedge meadows and oak savannas having been
 converted to agriculture due to their flat topography and rich soils.
 - Exotic species are a continuing and emerging problem. Plant species such as reed canary grass, purple loosestife, buckthom, gartic mustard, and Eurasian water mitfoil can quickly out-compete native species and wreak havoc on ecosystem balance. Zebra mussels and rusty crayfish are spreading to basin waterways, disrupting stream and lake ecology.
 - Monitoring of wildlife populations, water quality, and ecosystem function are needed to understand the status and trends of resources.
- The Oneida Tribe has a water quality protection plan for the reservation and has participated in the State priority watershed Program. It is participating in sediment and phosphorus study for a ssessment and modeling for the Wisconsin Lower Fox Basin. It is also participating in the Wisconsin NR CS WITribal Conservation Advisory Council.


Waterbody Name	Impairment	TMDL Submittel
Buffalo lake	Wercury fish Consumption Advisory	NA
Buffe Des Morts Lake	Notrients	NA
	Wercury fish Consumption Advisory	
	PCB Fish Consumption Advisory	
	Organic Enrichment/Low Dissolved Oxygen	l
	se diment	
Fox Kiver (from Porlage North To, But Not Including Buffalo lake)	PCB Fish Consumption Advisory	NA
Fox Niver At Buffalo Lake	PCB Fish Consumption Advisory	NA
Fox Niver, Oshkosh	Aquatic Toxicity	NA
Neenah Slough	PCB fish Consumption Advisory	NA
	Organic Enrichment/Low Dissolve d Oxygen	
Peippermill Cree k	Loss Of Instream Habitat	NA
	e diment	
	l'emperature	
Silver Cree k (2)	Contaminated \$ediments	NA
	Loss ♦f Instream Habitat	
	l'emperature	
Silver Lake (Big)	Aquatic Toxicity	NA
Un. Trib To Mason take (T14nr7e \$25	Loss ⊙f Instream Habitat	NA
	e diment	
Wurch Creek	Loss ⊙finstre am Habitat	NA
	e diment	

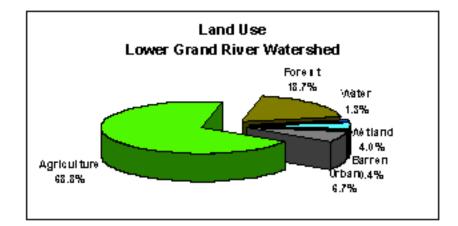
Lower Grand River Watershed

Hydrologic Unit Code: 04050006

Formore information, see the USEPA "Surf Your Watershed" website at http://cfpub.epa.gov/surf/huc.cfm? huc_code=04050006

Approved Watershed Management Plans

- Hager Creek Ottawa County Parks & Recreation Commission,
- Lake Macatawa Macatawa Area Coordinating Council
- Plaster Creek Kent County Drain Commission
- Schoolhouse Creek Kent County Drain Commission
- Spring Lake Spring Lake Lake Board
- Bear Creek Cannon Township
- Buck Creek Grand Valley Metro Council
- Crockery Creek Muskegon Conservation District
- Rogue River Grand Valley Metro Council
- Sand Creek Grand Valley Metro Council
- York Creek Alpine Township

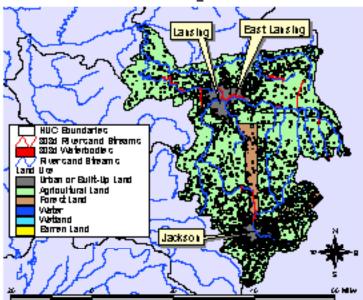

Watershed Overview / Ecology / Biodiversity

- The Lower Grand watershed covers 2012 square miles
- Over 68 percent of the land use is agricultural
- There are 17 listed impaired waters
- Grand Rapids and Grand Haven are the major urban areas in the watershed
- The Grand River Watershed is the largest watershed in the State of Michigan. The watershed has been divided into two parts, the Lower Grand River Watershed and the Upper Grand River Watershed. The Lower Grand River Watershed covers ten counties.

Conservation Groups

- Ottawa County Parks & Recreation Commission, http://www.cco.ottawa.mi.us/parks/
- Macatawa Area Coordinating Council http://www.macatawa.org/ ~macc/
- Kent County Drain Commission http://www.accesskent.com/ government/departments/drain index.htm
- Kent County Drain Commission
- Spring Lake Lake Board
- Rogue River Watershed Council
- West Michigan Environmental Action Council
- Natural Resource Conservation Service
- Grand Valley State University Annis Water Resources Institute, http://www.cgvsu.edu/wri/isc/lowgrand/

- A Section 319 Watershed Management Planning Grant was awarded by the Michigan Department of Environmental Quality (MDEQ) to facilitate the development of a watershed management plan for the Lower Grand River Watershed. The grant was a warded to the Grand Valley Metro Council. The Grand Valley Metro Council has contracted with the Annis Water Resources Institute and Fishbeck, Thompson, Cair & Huber, Inc. to complete the management plan. Many communities are participating in the development of this plan. Counties, cities, and townships are currently involved by matching funds or in kind services.
- Ottawa County Parks to stop this erosion and to restore the Hager Creek
 area to its natural condition. To achieve this goal, the Hager Creek
 Watershed Management Plan was developed. This plan, which has been
 approved by the Michigan Department of Environmental Quality, looks at
 the entire length of Hager Creek as well as the surrounding land including
 properties west of 28th Avenue.
- The primary goal of the Sand Creek Watershed Project is to restore or improve the cold water fishery. The secondary goal of the project is to protect and improve the habitats of native aquatic life and wildlife.


Walerbody Name	Impairment	Anticipated TMDL Submittal
Ball Creek	Macroinvertebrate Community Rated Poor	2001
Bass Kiver	Pathogens	200 6
	Fish Community Rated Poor	2006
	Walcroinvertebrate Community Rated Poor	200 6
Buck Creek	Pathogens	2006
Deer Creek (Watershed)	Notient	2011
	Pathogens	2011
	Dissolved Oxygen	2011
	Fish Community Rated Poor	2011
	Fish Kills	2011
	Malcroinvertebrate Community Rated Poor	2011
Duke Creek	Malcroinvertebrate Community Rated Poor	2006
Grand River	PCBs Fish Consumption Advisory	2009
	PCB8	2009
Grand River	Wercory	2010
Grand River	Pathogens	2006
Plaster Creek	Pathogens	2001
	Fish Community Rated Poor	2001
	Malcroinvertebrate Community Rated Poor	2001
Rainbow Lake	Mercury	2011
Rio Grande Cree k	Pathogens	2002
Sand Creek	Fish Community Rated Poor	200 6
Slege man Cree k	Walcroin vertebrate Community Rated Poor	200 6
Strawberry Creek	Fish Community Rated Poor	200 6
Unnamed Tributary To Grand River	Fish Community Rated Poor	200 6
Wabasis lake	Wercury	2011
York Creek	fish Community Rated Poor	2006

Upper Grand River Watershed

Hydrologic Unit Code: 04050004

For more information, see the USEPA website at http://cfpub.epa.gov/surf/huc.cfm? huc_code=04050004

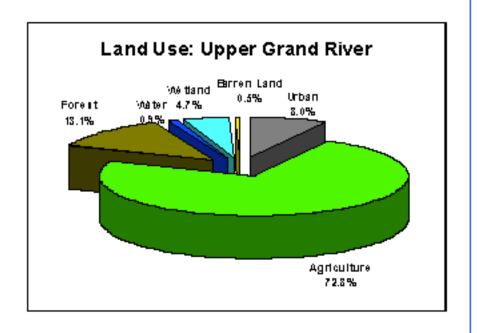
Approved Watershed Management Plans

Carrier Creek - Eaton County Drain Commission

Watershed Management Plans Under Development

 Upper Grand River – Grand Valley State University Annis Water Resources Institute

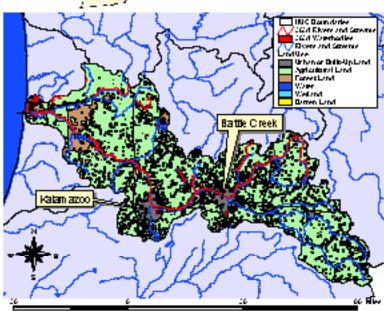
Watershed Organizations


- Baton County Drain Commission, http://www.eatoncounty.org/Drain/ Drain htm
- Grand Valley State University Annis Water Resources Institute, www.gvsu.edu/wri

Watershed Overview / Ecology / Biodiversity

- The Upper Grand River watershed is almost 1750 square miles.
- Almost three quarters of the land is in agricultural use.
- There are three urban areas in the watershed: Lansing, East Lansing, and Jackson, Wichigan.
- The watershed has 10 listed impaired waters.
- There are 988 miles of river and streams in the watershed.
- The Upper Grand watershed flows into the Lower Grand River watershed, where it then flows into Lake Michigan

- A 319 grant was awarded to the Annis Water Resources Institute to develop an Upper Grand River watershed management plan.
- The Dahlem Nature Center was awarded \$12,000 in grant funds to assess
 the benthic macroin vertebrate community, stream habitat, and water
 chemistry in the Upper Grand River Watershed.
- Development in Delta and Windsor townships over the last several years has significantly changed the landscape around Carrier Creek;
 - An increase in the amount of impervious surface area (i.e., rooftops and parking lots) has caused an increase in the amount of rain water draining into Carrier Creek.
 - Water levels are flashy, fluctuating from just a few inches to nearly four feet after heavy rains.
 - Because of past dredging activities, natural floodplains have been separated from the creek and are no longer available for water storage.
- The Carrier Creek Stormwater (Management and Restoration Project was developed to address these challenges. Without improvement, the increased water volume entering the creek will cause increased flooding, further erosion, and increased flashiness.
 - South of I-496 (upstream), efforts will focus on creating an
 effective drainage system and reducing flashy hydrology to the
 downstream portions of the drain.
 - North of F496 (downstream), work will focus on creek restoration.

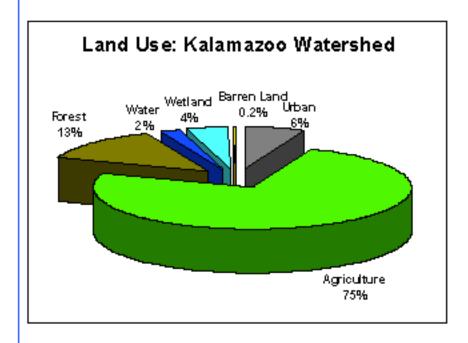

Waterbody Name	mpairment	Anticipated TMDLSubmittal
Albrow Creek	Pathogens	2007
Carrier Creek	Erosion	2000
	mpaired Biologic Community	2000
Grand River	PCB Fish Consumption Advi- sory	2009
	PCBs	2009
Grand River	Pathogens	2008
Grand River	Pathogens	2003
	Dissolved Oxygen	2003
	fish Community Rated Poor	2003
	Macroin vertebrate Commu- nity Rated Poor	2003
Grand River And Red Cedar River#	Path ogens	2011
	Dissolved Oxygen	2011
	fish Kills	2011
Red Cedar River	fish Community Rated Poor	2003
Red Cedar River	Pathogens	2011
	Dissolved Oxygen	2011
Vermillion Creek	Path ogens	2009
Wolf Creek	Nutrients	2005
	fish Community Rated Poor	2005
	Macroin vertebrate Commu- nity Rated Poor	2005

Kalamazoo River Watershed

Hydrologic Unit Code: 04050003

Approved Watershed Management Plans

- Davis, Gourdneck and Portage Creeks Forum for Greater Kalamazoo
- Four Townships Area Four Townships Water Resources Council
- Greater Battle Creek Area Calhoun Conservation District
- Little Rabbit River- Allegan Conservation District
- Portage and Arcadia Creek Forum of Greater Kalamazoo
- Rice Creek Calhoun Conservation District
- Upper Rabbit River Allegan Conservation District

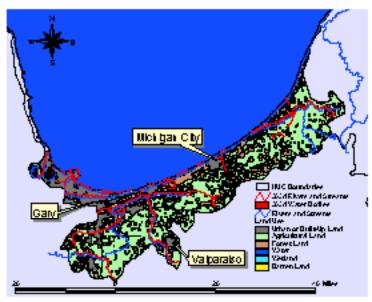

Watershed Groups

- Kalamazoo river Network www.kalamazoorivernet
- The Forum of Greater Kalamazoo www.theforum.com
- Four Townships Water Resources Council http://community.mive.com/ cc/4twrc
- Calhoun Conservation District http://www.calhoun.cd.org/
- Allegan Conservation District-http://allegan.cd.org/

Watershed Overview / Ecology / Biodiversity

- The Kalamazoo basin watershed covers 2029 square miles.
- Amost 75 percent of the watershed is agricultural use.
- There are three urban areas in the watershed: Kalamazoo, Battle Creek, and Albion
- The basin includes 22 listed impaired waterways.
- The Kalamazoo Riverisan Area of Concern due to PCB contamination.

- A Watershed Management Plan (WMP) [funded for a two-year period beginning July 1, 2001 by a Nonpoint Source Pollution Grant under Section 319 of the Clean Water Act (CWA)] is being developed for Portage Creek and Arcadia Creek in the south central portion of the Kalamazoo River Watershed. The Kalamazoo River Watershed drains eight counties in Southwest Lower Michigan and empties into Lake Michigan at Saugatuck, Michigan.
- In 2002 the Four Township Water Resources Council completed a 3 year program to protect surface water quality under Section 319 of the federal Clean Water Act. The Michigan DEQ and U.S. EPA have awarded the Council a second grant of \$210,000 for 2 years. The Council will provide an additional \$70,000 in local contributions towards the project. The project will continue current programs to assist local governments develop land use planning and zoning strategies, create and distribute research and educational materials and facilitate conservation easements. In addition two newimportant programs will be implemented. The Council will greatly expand its citizen education program on local resource protection and is expanding the Natural Features Inventory of the Four Township area.
- The Battle Creek River Watershed Project is an effort by land owners, residents, conservation groups, and local, state, and federal agencies to protect the quality of water for drinking, agriculture, recreation, wildlife, and fisheries. The Battle Creek River has been identified as one of the leading contributors of phosphorus and sediment to the Kalamazoo River. A watershed management plan will be developed that in tegrates the concerns of watershed stakeholders and, through implementation, improves the water quality within the watershed area.
- The goal of the Gun River watershed project is to improve water quality and aquatic habitat in the Gun River Watershed for the benefit of present and future generations. The objectives of the planning project are to locate sources of pollution in the watershed, to prioritize critical areas within the watershed in which to focus implementation efforts, and to build and retain a high level of stakeholder a wareness and participation. The project is designed to compliment current efforts in the Kalamazoo River/Lake TMDL process, to reduce phosphorus, and improve water quality.
- Match-e-be-nash-she-wish Band of Pottawa tomi (Gun Lake Band) is involved in Kalamazoo River watershed


For more information, see the USEPA "Surf Your Watershed" website at http://cipub.ep.a.gov/surf/huc.cim?huc_code=04050003

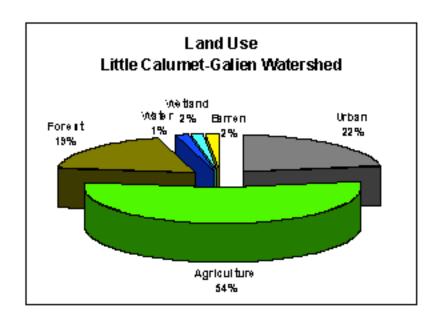
Waterbody	mpairment	TMDLSubmittal
Augusta Creek	Macroinvertebrate Community Rated Poor	200 6
Battle Creek River	fish Consumption Advisories (PCBs)	2010
Black Creek	Nutrients	2004
	Wacroinvertebrate Community Rated Poor	2004
	Nuisance Plant Growth	2004
	Total Dissolved Solids	2004
Brickyard Creek	Wacroinvertebrate Community Rated Poor	2011
Chart Creek, E. Br.	Wacroinvertebrate Community Rated Poor	2001
Crooked Creek	Macroinvertebrate Community Rated Poor	2011
Davis Creek	fish Community Rated Poor	2004
	Macroinvertebrate Community Rated Poor	2004
Ferner Lake	Nutrients	200 6
	fish Consumption Advisories (PCB8)	200 6
	Nuisance Plant Growths	200 6
Gull Lake	Wercury	2011
	fish Consumption Advisories (PCBs)	2010
Gun Lake	Pa tho gens	2011
Gun Rîver	Macroinvertebrate Community Rated Poor	2011
Kalamazoo River	Mercury	2010
Kalamazoo River	fish Consumption Advisories (PCBs)	2006
lake Macatawa	Chlordane	2009
	fish Consumption Advisories (PCBs)	2009
litte Rabbit River	Macroinvertebrate Community Rated Poor	2010
Mann Creek	Balcterial \$limes	2011
	Macroinvertebrate Community Rated Poor	2011
	¢rganic Enrichment	2011
fine take	Mercury	2011
Raibbit River	Endosulphan	2003
	Macroinvertebrate Community Rated Poor	2005
Red Run	Dissolved Oxygen	2007
	fish Community Rated Poor	2007
	Wacroinvertebrate Community Rated Poor	2007
Nice Creek	Macroinvertebrate Community Rated Poor	2011
Selkirk take	fish Consumption Advisories (Mercury)	2011
Wannadoga Creek	Macroinvertebrate Community Rated Poor	2011

Little Calumet – Galien Watershed

Hydrologic Unit Code: 04040001

Approved Watershed Management Plans

- Galien River-The Conservation Fund http:// www.chikamingopenlands.org
- Berrien County Drain Commissioner http://www.berrien.county.org/ draincomm/


Watershed Organizations

- Grand Cal Task Force http://www.grandcal.org/
- Save the Dunes Council http://www.savedunes.org/
- Chicago Wilderness http://www.chiwild.org/

For more information, see the USEPA "Surf Your Watershed "Website at http://cfpub.epa.gov/surf/huc.cfm?huc.code=04040001

Watershed Overview / Ecology / Biodiversity

- Urban areas include Chicago, Gary, Michigan City, and Valparaiso.
- The watershed covers 723.72 square miles
- The watershed has 27 listed impaired waters.
- Most coastal wetlands and nearshore aquatic habitats have been eliminated or degraded. The effect of natural forces on sand transport and shoreline development has been greatly reduced or eliminated entirely in some areas.
- Industry filled or drained the wetlands and leveled the dunes and used steel stag to fill low areas and the lakefront. The Little Calumet River has actually been moved several times to accommodate industry.
- The region remains one of the most industrialized in the Lake Michigan basin
- Presettlement northwest Indiana was continuous wetland. As of 1979, less than 5 percent of the original wetland cover remained. This exists primarily as narrowstrips of intact habitat.
- The Indiana Dunes National Lakeshore has more plant species (including exotics) than all but two other national parks, and at 16,000 acres is much smaller than most other national parks.
- Warren Dunes State Park provides 1,950 acres of recreational
 opportunities along the beautiful shore of Lake Michigan in
 southwestern Michigan. The rugged dune formation rises 240 feet
 above the lake The park has more than two miles of shoreline, six miles
 of hiking trails and is open year-round.

- The City of Gary and The Grand Calumet Task Force maximize the benefit of the Grand Calumet River cleanup by looking at ways to improve the surrounding environment for the benefit of the community in Gary.
- The US Army Corps of Engineers (USACE) is in process of dredging the sediments from the Indiana Harbor and Ship Canal in order to continue its use as a navigable waterway.
- The Galien River Watershed Project is focused on decreasing drainage and flooding problems along the river and the streams flowing into it.
 The focus of a 319 grant is flood prevention and improved water quality in the system. Beneficiaries will be local farmers and those interested in fishing and other recreational activities.
- The Grand Calumet Task Force in partnership with the City of East Chicago and the East Chicago Housing Authority will work together with the residents of the West Calumet section of East Chicago to create an Utban Open Space.
- The watershed includes a Great Lakes Area of Concern. Problems in the AOC include contamination from polychlorinated biphenyls (PCBs), polynuclear aromatic hydrocarbons (PAHs) and heavy metals, such as mercury, cadmium, chromium and lead. Additional problems include high fecal coliform bacteria levels, biochemical oxygen demand (BOD) and suspended solids, oil and grease. Nonpoint sources include:
 - Contaminated Sediment.
 - Industrial Waste Site Runoff.
 - CERCLASites.
 - Hazardous Waste Sites under RCRA.
 - Underground Storage Tanks (USTs)
 - Atmospheric Deposition
 - Utban Runoff.
 - Contaminated Groundwater

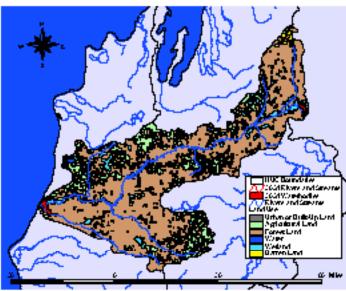
Point sources of contaminants include:

- 3 Industrial and Municipal Wastewater Discharges.
- ? Combined Sewer Overflows (CSOs).

Walerbody Name	Impairme m	TMD1 Submittal
	Pathogens	2004
Deer Creek, MI	Algae	2004
Deer Cleek, Wil	Bacterial Slimes	2004
	Malcroin vertebrate Community Rated Poor	2004
Galien Kiver, MI	Pathogens	2000
Galeli NVer, Wil	E. ⇔i	2000
Galien Kver, MI	Chlordane	20 09
Galen aver, Mi	PCB Fish Consumption Advisory	20 09
Galien River, E.	Notient	20 09
Br., MI	Algae	20 09
	Notient	20 03
Sawyer Creek, Mi	Algae	20 03
	Malcroinvertebrate Community Rated Poor	20 03
Beraver Dam Dilah, IN	Impaired Biofic Communities	2007
	Pesticides	2004
	Lead	2004
Burns Dificih, IN	E. Coli	2004
BUT IIS DINC II, IN	Mercury Fish Consumption Advisory	20 12
	PCB Fish Consumption Advisory	20 12
	Impaired Biolic Communities	2007
Delep River, IN	Impaired Biolic Communities	2007
Dunes Creek, IN	Impaired Biolic Communities	2007
	Pesticides	
	Copper	2000
	Lead	2000
Grand Calumet Kiver (East Branch), IN	Oyanide	2000
	Oil And Grease	2000
	Wercury fish Consumption Advisory	2000
	PCB Fish Consumption Advisory	2000
	Impaired Biotic Communities	2000

Little Calumet-Galien Watershed Impaired 303(d) Waters continued

Walerbody Name	Impairment	TMDL Sub- mittal
	Oyanide	2004
Trail Creek, IN	E. Coli	2004
irai creek, ik	Mercury Fish Consumption Advisory	20 12
	PCB Fish Consumption Advisory	20 12
Turkey Creek, IN	Impaired Biofic Communities	2007
Wolf Lake, IN	PCB Fish Consumption Advisory	20 12
	(Ve tals	
	Notifients	
Calumet R, IL	Ammonia	
	Organic Enrichment/Low Dissolved Oxy- gen	
	♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦	
	We tals	
	Notrients	
Calumet R, IL	Ammonia	
	Organic Enrichment/Low Dissolved Oxy- gen	
	♦ their Habitat Alteration (8)	
	Notrients	
	\$uspended \$olids	
Wolf, It	Noxious Aquatic Plants	
	Organic Enrichment/Low Dissolved Oxy- gen	
	\$8tation	


Waterbody Name	Impairment	TMDL Sub- milkal
neral sect, fields	Pesticides	2000
	Le ad	2000
	Oyanide	2000
	Ammonia	2000
Grand Calumet Kiver	Chlorides	2000
(West Branch), IN	Dissolved Oxygen	2000
	Mercury fish Consumption Advisory	2000
	PCB Fish Consumption Advisory	2000
	Impaired Biotic Communities	2000
Grand Calumet River Lagoons / Marquette Park Lagoon, IN	PCB Fish Consumption Advisory	2000
	Pesticides	2000
L-5 U-1 O	Lead	2000
Indiana Harber Ca- nal (IHC), IN	Dissolved Oxygen	2000
mar (mary, m	Mercury fish Consumption Advisory	2000
	PCB Fish Consumption Advisory	2000
	Pesticides	2000
	Oil And Grease	2000
Indiana Harber Ca-	Dissolved Oxygen	2000
nal (Lake George Branch Of), IN	Mercury fish Consumption Advisory	2000
	PCB Fish Consumption Advisory	2000
	Impaired Biotic Communities	2000
Lake George, IN	PCB Fish Consumption Advisory	20 12
	E. Coli	2004
Lake Wichigan, IN	Mercury Fish Consumption Advisory	20 12
	PCB Fish Consumption Advisory	20 12
	Pesticides	2004
150 - 60-10	Oyanide	2004
Little Calumet River, IN	E. Coli	2004
	Mercury fish Consumption Advisory	20 12
	PCB Fish Consumption Advisory	20 12
Little Columet River,	Mercury fish Consumption Advisory	20 12
IN	PCB Fish Consumption Advisory	20 12
	Pesticides	2004
Little Calumet River, IN	Oyanide	2004
	Mercury fish Consumption Advisory	20 12
	PCB fish Consumption Advisory	20 12
	Impaired Biotic Communities	2007
Niles Dilch, IN	Impaired Biotic Communities	2007
Sall Creek, IN	E. Coli	2004

Manistee River Watershed

Hydrologic Unit Code: 04060103

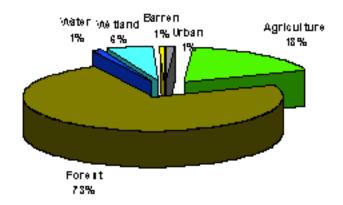
Approved Watershed Management Plans

- Little Manistee River Conservation Resource Aliance
- Manistee River Conservation Resource Aliance

Watershed Organizations

- Upper Manistee River Association
- Conservation Resource Alliance
- Little River Band of Ottawa Indians

Formare information, see the USEPA "Surf Your Watershed" website at http://cfpub.epa.gov/surf/huc.cfm?huc_code=04060103

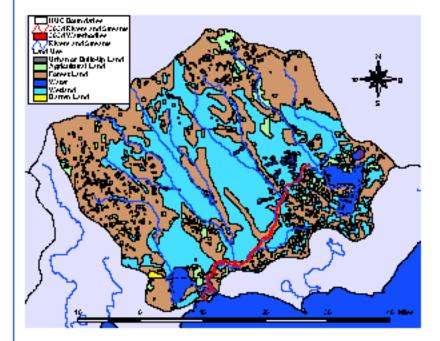

Watershed Overview / Ecology / Biodiversity

- The Manistee River watershed covers 1904.04 square miles, with less than half of mile of Lake Michigan shoreline.
- Its predominant land use is forest.
- The watershed has just over 18 square miles of inland takes
- # has 833 miles of waterways, 93 percent of which have been assessed.
- Two waterways are TMDL listed waterways. One is listed for one contaminant and one is listed for three contaminants.
- The Manistee is one of the most stable, high-quality, coldwater streams in the country. It is a groundwater-driven stream.
- Excessive sediment is a primary problem in the watershed, a ffecting
 fish reproduction, afters channel morphology, and impairs a quatic
 invertebrates. The primary sources are erosion from degraded
 streambanks and poorly designed stream crossings.

- Watershed Restoration work on the Manistee River is carried out by a diverse group of partners organized as members of the Upper Manistee River Restoration Committee. This committee is administered by Huron Pines RC&D and has actively worked on stabilizing streambanks, restoring access sites, and creating aquatic habitat. A partner of the Restoration Committee, the Upper Manistee River Association, is now working on the designation of the Upper Manistee as an official Natural River. Such a status would give the Manistee extended protection from overdevelopment.
- The Little River Band of Ottawa Indians received a 319 grant to address four road-stream crossings that are failing, improve access to the river's edge, and reclaim a lake sturgeon spawning ground.
- The Little River Band of Ottawa Indians received one of the first 20 national watershed grants to support their efforts to restore and monitor the water quality of the Manistee River.

- The Conservation Resource Aliance (CRA) was awarded a Clean Michigan Initiative Grant for the Manistee River Watershed, including Bear Creek, for \$696,691, utilizing \$263,228 in local match, over a three-year period. Under this grant approximately 6 streambanks and 3 road/stream crossings within the Bear Creek Watershed will be repaired. Additionally, the CRA was awarded \$80,000 in Ten Percent Runds from the U.S. Forest Service to repair 5 road/stream crossings in the watershed. CRA was also awarded a TEA21 Grant from the Michigan Department of Transportation that includes money to address eroding road/stream crossings on Bear Creek.
- Three county Road Commissions are working cooperatively in the Pine River subwatershed to address traffic safety and water quality concerns simultaneously. With Phase 1 completed, Phase 2 has been granted \$225,000 by the Michigan Department of Transportation to fix failing road/stream crossings in the Pine and Little Manistee watersheds.
- In 2002, two stream bank sites were completed by the Little Manistee River Watershed Partnership using 319 funds.
- Two stream blank sites were restored through the Pine River Watershed Restoration Project in 2002 for the Big Manistee River watershed. Design work began on three Osceola County road crossing sites to be implemented in 2003 or 2004. Site planning work on one additional streambank on the Pine is in progress, with implementation planned for 2004.
- A three year 319 project on the Manistee River was finished in 2002 by the Manistee River Watershed Partnership Project. The final project, a timber bridge over the north branch near Sharon was completed at a cost of over \$320,000. The project was responsible for four large stream banks, and three large road crossings. In addition, the partnership was formed and signed by approximately 35 partners.

Land Use Manistee River Watershed

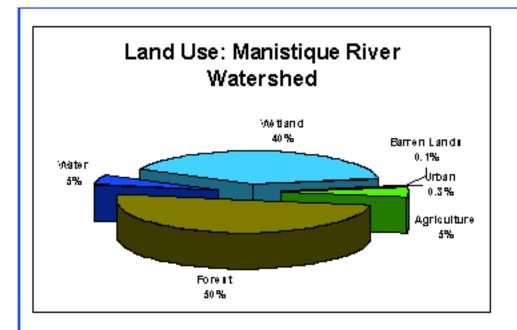


Waterbody	mpairment	Anticipated TMDL Submittal
Lake Margrethie	Mercury	2011
Manistee Lake	Mercury	2011
	Pathogens	2006
	PCBS	2010

Manistique River Watershed

Hydrologic Unit Code: 04060106

Watershed Organiozations

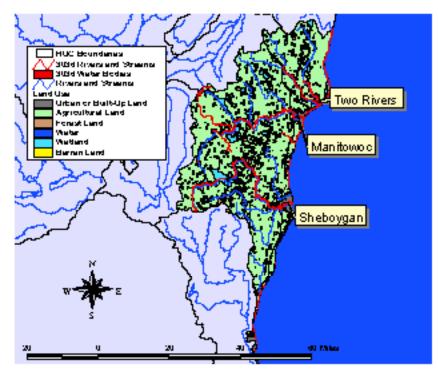

 The Manistique River Area of Concern Public Advisory Committee, Merilee Blowers, chair

For more information, see the USEPA "Surf Your Watershed" website at http://cfpub.epa.gov/surf/huc.cfm?huc_code=04060106 or contact Sharon Baker at bakerSL@michigan.gov.

Watershed Overview / Ecology / Biodiversity

- The Manistique Riveris an Area of Concern (AOC).
- Historical uses of Manistique River waters in the AOC include receiving
 wastes from sawmills, a paper mill, small industries, the municipal waste
 water treatment plant, plus navigation for shipping, ferrying,
 recreational boating and commercial fishing. Current uses include
 receiving the wastewater discharges from Manistique Papers, Inc. and
 the City of Manistique Wastewater Treatment Plant. Recreational uses
 are mainly boating, sightseeing, and fishing.
- Approximately 141,000 cubic yards of PCB contaminated sediments have been removed from the river and harbor from 1994-2000.
- The dredging of contaminated sediments was completed at the end of 2000. Final dredging was done by divers with hydraulic hoses to minimize resuspension of PCBs and to ensure a clean substrate when completed.
- The Seney National Wildlife Refuge is upriver of Manistique. The refuge
 is 95,455 acres of field and secondary growth forest. Almost two-thirds
 of the refuge are varying types of wetlands that provide habitat for
 threatened and endangered species and a variety of wildlife. The
 refuge is home to 200 bird species, 26 fish species, and 50 mammalian
 species. It is also home to such bird species as eagles, loons, and
 trumpeter swans.

- Restrictions on fish & Wildlife Consumption include a ban for all persons banning consumption of all carp from the Manistique River below M-94/ Old U.S. 2. and consumption restrictions on channel catfish (below M-94/Old U.S. 2) for women and children, and consumption restrictions on northern pike (upstream from dam at Manistique) for all persons.
- There are beach closings and restrictions on recreational access due to
 the presence of PCBs at the site and the combined sewer overflow
 (CSO) pipe located within the AOC that can discharge sewage during
 storms and during the spring runoff. The AOC is on the list of Michigan
 Sites of Environmental Contamination identified under Public Act 307. It
 is one of the highest ranking sites in the state.
- The Manistique River RAP found that the main problem contributing to fishery use impairment was PCBs. Aquatic nuisance species also threaten the fishery productivity. The presence of sawdust in the water and in the sediments severely degrades plant and animal habitat. The dam at the head of the old flume restricts fish passage but effectively blocks lamprey from the upper river.
- There are plans to phase out combined sewer systems by 2020.

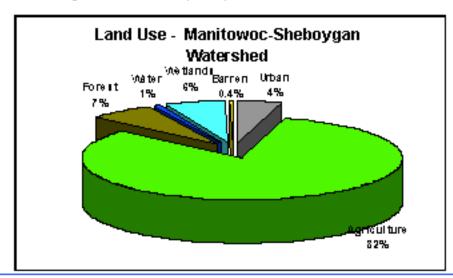


Naterbody Name	Impairment	An ficipated TMDL
Manistique River	Pathogens	2011
	P CBs Fish Consumption Advisory	2000
Manistique River And N. Manistique	Mercury Fish Consumption Advisor	ry2011
West Branch Lakes	Mercury Fish Consumption Advisor	ry2011

Manitowoc-Sheboygan Watershed

Hydrologic Unit Code: 04030101

Watershed Contacts

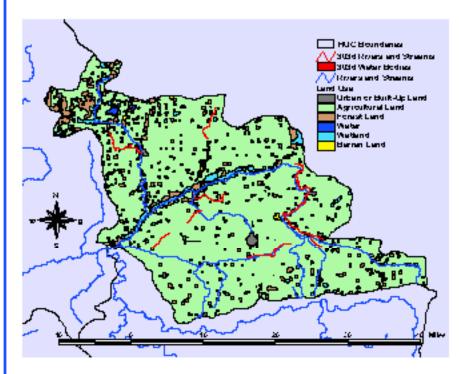

- Sheboygan Rivers Land and Water Basin Partners http://cleanwater.uwexedu/sheboygan/
- Lakeshore Natural Resources Partnership http://dean-water.uwex.edu/ lakeshore/
- Doug Rossberg, Lakeshore Basin WaterTeam Leader-Doug, Rossberg @dnr.state.wi.us
- Mc Pappas , Sheboygan River Basin WaterTeam Leader-Mctor.Pappas@dnrstate.wips

For more information, see the Wisconsin Department of Natural Resources"
"Wisconsin's Basins" website at http://dnr.wi.gov/org/gmu/gmu/html and the
USEP A website at http://cfpub.epa.gov/surf/huc.cfm?huc_code=04030101

Watershed Overview / Ecology / Biodiversity

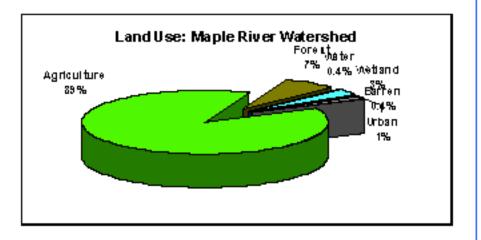
- The major tributaries of the watershed include the Branch River, the
 North and South branches of the Manitowac River, the Lower
 Manitowac River, Sevenmile and Silver Creeks, (all in the Manitowac
 sub-watershed) Sauk and Sucker Creeks, the Black River, the Sheboygan
 River, the Onion River, the Mullet River, and the Pigeon River (in the
 Sheboygan River subwatershed).
- The Sheboygan River is an Area of Concern.
- Predominant land uses are agricultural or rural and include pasture land, cropland and vacant fields. Natural Areas, including open water, woodlands, wetlands, parklands and undisturbed non-agricultural lands are the second most abundant land use.
- The Natural Heritage Inventory has documented 10 endangered, 20 threatened and 37 special concern plant and animal species, and 24 rare aquatic and terrestrial communities within the Sheboygan River basin.
- Runoff from specific and diffuse sources, contaminated sediment, habitat modifications (such as channelization and dams) have degraded water quality throughout the Basin.
- Recreational highlights include wildlife watching, hiking, fishing, birding, bicycling, golf, horseback riding, snowmobiling, skiing, camping, picnicking and water sports.
- State facilities such as the Kettle Moraine State Forest, Kohler-Andrae State Parks, Harrington Beach State Park, various state witdlife areas, and the Ice Age National Scenic Trail provide both satisfying and unique recreational experiences.
- The Basin includes the Southeast Glacial Plains and Northern Lake Michigan Boological Landscapes.
- Some streams have the ability to support rout populations. Others have spring and fall runs of stocked steelhead and salmon. Fishing opportunities also exist in the rivers and harbors for northern pike, small mouth bass, and yellowperch.
- Wildlife include white-tailed deer, ring-necked pheasant, waterfowt, geese, gray and flying squirrels, raccoons, woodcock, a variety of hawks, songbirds, and shorebirds.
- Grasslands and barrens are promoted through prescribed burns and mowing.

- The Wisconsin DNR divides the Sheboygan-Manitowac watershed between the Sheboygan basin management area and the Lakeshore basin management area.
- Identified Brivironmental concerns for the Sheboygan Rivermanagement area include:
 - Water quality problems are from in-place pollutants, runoff in urban areas, floodplain development, and agricultural practices.
 - Preservation of biodiversity and protection of endangered and threatened species, this is done by preserving their habitat.
 - A need for comprehensive approach to wetlands protection and restoration.
 - Educate people to help prevent the spread of exotic nuisance species, which can wreak havoc on ecosystem balance.
 - Monitoring of wildlife populations, water quality, and ecosystem function are needed to understand the status and trends of resources in the basin.
- Partnership Priorities for the Sheboygan River basin include:
 - Promote sound land use by helping communities identify, prime agricultural
 lands, environmental corridors and natural areas. Encourage redevelopment of brownfields and abandoned properties. Work with local
 communities in developing "smart growth "plans.
 - Conserve and restore riparian areas by conserving wetlands, enhancing sensitive habitat areas in lakes, and removing dams where feasible.
 - Acquire sufficient public lands to manage for multiple uses. Complete the Sheboygan Marsh Master Plan. Promote public land acquisitions that protect natural areas and provide recreational opportunities.
 - Improve water quality by encouraging best management practices in agricultural areas and promoting storm water management measures.
 - Enhance educational activities for forestry, air quality, water quality, witdlife management and health yecosystems.


Waterbody Name	Impaiment	Anticipated TMDLSubmit- tal
Big Elkhart Lake	Mercury fish Consumption Advisories	NA
Bullhead take	Mercury fish Consumption Advisories	NA
Crystal Lake	Mercury fish Consumption Advisories	NA
EastTwin River Up- stream To First Dam	PCB fish Consumption Advisories	NA
Killsnake Creek	PCB fish Consumption Advisories	NA
Manitowoc River (Mouth to N. Branch)	PCB fish Consumption Advisories	NA
Manitowoc River (Mouth to N. Branch)	Loss Of Instream Habitat	NA
	Organic Enrichment/Low Dissolved Oxy- gen	
Manitowoo S. Branch	PCB fish Consumption Advisories	NA
Pigeon Lake	Mercury fish Consumption Advisories	NA
Pine Creek	PCB fish Consumption Advisories	NA
Pine Creek	PCB fish Consumption Advisories	NA
Sheboygan River	Fish Consumption Advisories	NA
	P CBs	
Sheboygan River Below Franklin Downsteam To Sheboygan Falls	Mercury fish Consumption Advisories	NA
	PCB fish Consumption Advisories	
Silver Lake	Organic Enrichment/Low Dissolved Oxy- gen	NA
	Winter Kils	
Two Rivers Harbor	Aquatic Toxicity	NA
	Fish Consumption Advisories	
WestTwin River	Nu trien ts	NA
	Fish Consumption Advisories	
	ediment	

Maple River Watershed

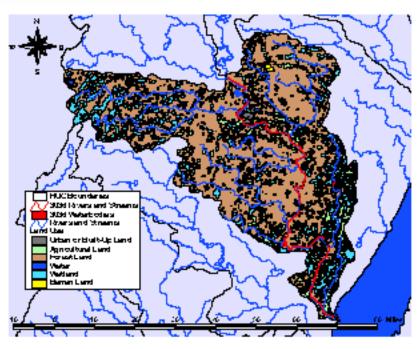
Hydrologic Unit Code: 04050005


For more information see the USEPA website at http://cfpub.epa.gov/surf/huc.cfm? huc_code=04050005

Watershed Overview / Ecology / Biodiversity

- The Maple River watershed covers over 936 square miles.
- The watershed has 404 miles of waterways that flow year round.
- The watershed is over 87 percent agricultural.
- The Maple River watershed feeds into the Lower Grand River.

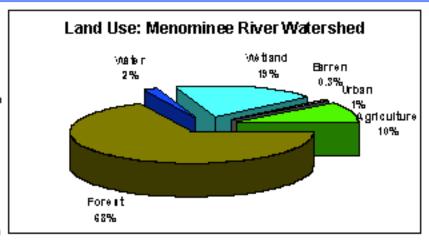
Waterbody Name	mpairment	Anticipated TMD L Submittal
Alder Creek	Nutrien ts	2009
	Algae	2009
	fish Community Rated Poor	2009
Butternut Creek	Path ogens Path ogens	2006
	Bacterial Slimes	2006
	fish Community Rated Poor	2006
Cox Drain	Nutrien ts	2009
	Algae	2009
	fish Community Rated Poor	2009
	Macroinvertebrate Commu- nity Rated Poor	2009
Lost Creek	Nutrien ts	2009
	Algae	2009
	Bacterial Slimes	2009
	fish Community Rated Poor	2009
	Macroinvertebrate Commu- nity Rated Poor	2009
Maple River	Nutrien ts	2009
	Nuisance Plant Growths	2009
Peet Creek	Nutrien ts	2009
	Nuisance Plant Growths	2009
Pine Creek(Watershed)	Nutrien ts	2007
	Nuisance Plant Growths	2007
Spaulding Creek	Nutrien ts	2004
	Algae	2004



Menominee River Watershed

Hydrologic Unit Code: 04030108

Approved Watershed Management Plans


- Rumee Creek Dickinson Conservation District, http://www.dickinson.cd.org/
- Hamilton Creek Dickinson Conservation District1.
- Pine Creek (Dickinson Co), Dickinson Conservation District

Watershed Overview / Ecology / Biodiversity

- The Menominee River forms the boundary between Wisconsin and the Upper Peninsula of Michigan in Marinette, Florence, Forest, Vilias, Menominee, Dickinson, and Iron counties before draining its contents into Lake Michigan.
- The Menominee system is comprised of a number of large and small tributaries, the major tributaries being the Michigamme, Brule, Pike, Paint, Iron and Sturgeon Rivers. The Menominee originates at the confluence of the Michigamme and Brule Rivers and flows approximately 115 miles to the east towards the waters of Green Bay.
- The total basin covers approximately 4,070 square miles with 2,618 square miles located in Michigan and 1,452 square miles located in Wisconsin.
- The topography in the Menominee River basin was formed and heavily altered by periodic glaciation, the most recent of which was the Wisconsin period- 10,000-20,000 years ago.
- The region is characterized by lakes, glacial plains, end moraines, and poorly integrated east to west drainage. Bedrock outcrops and moraine deposits in the northern river basin create a more rugged terrain with a maximum elevation of 1300 feet, giving the basin a gradient of approximately five feet per mile. Due to extensive amount of glacial activity, the Menominee basin consists mostly of sand and gravel called outwash which is undertain by dolomite.
- Some of the developed areas are constructed on man-made soils that
 were deposited during the lumbering boom around the turn of the
 century. These man-made soils are composed of sawdust and waste
 wood that was discarded and then overlain with sand or topsoil as the
 building surface. These unstable soils have subjected many structures
 with excessive settling and alignment shifting.
- The lower reaches of the Menominee River have been subjected to a high amount of pollution from industries over the years and now this watershed is identified as an Area of Concern.

For more information, see the US EP A website at http://cfpub.epa.gov/surf/ huc.cfm?huc_code=04030108

- The Wisconsin portion of the watershed is part of the Wisconsin DNR's Upper Green Baybasin management area.
- The Pine Creek Watershed Project is an ongoing effort to address non-point source pollution throughout this beautiful 48,000 acre watershed in south central Dickinson County, Michigan, Based on previous EPA grants, which created a Pine Creek Watershed Management Plan and installed twelve Best Management Practices, the watershed received a Clean Michigan hitiative Grant (CMI) that targets sediment and nutrient pollution. The sources of these pollutants include road crossings, forest harvest practices, agriculture, cropland erosion, ORV trail crossing, and eroding streambanks. During the three-year CMI grant, which began in June 1999 and ends June 2003, approximately 20 Best Management Practices will be implemented, on a cost-share basis, with watershed landowner/partners. The watershed has also received funding from an EPA Section 319 grant to promote education about Best Management Practices and non-point source pollution control.
- The Pumee Creek Watershed Project was a warded a two year Environmental Protection Agency Section 319 Clean Water Act Grant and officially began the planning phase of the watershed project in October 2000. The Department of Environmental Quality administers the grant funding while Dickinson Conservation District staff directly manages the project on a local level. The overall goal of the Pumee Creek Watershed Project is to protect and restore Fumee Creek and the lakes and streams within the watershed from further degradation due to non-point sources of pollution. Addressing the water quality issues in this urban watershed will allow the watershed project to effectively maintain and/or improve the surface water quality within the watershed.
- The Hamilton Creek Watershed plan is a two year project funded by a 319 grant to reduce runoff in the watershed, thereby reducing sediment, nutrients and heavy metals associated with this process; reduce erosion in the watershed, thereby reducing sediment, nutrients and heavy metals associated with these processes, improve or restore natural habitat for fish and wildlife within the watershed; and to promote stewardship activities in the watershed. The project is planting native plants surrounding Lake Mary, surveying frog population, monitoring water quality, and mapping aquatic plants.
- Hannahville Indian Community has a water quality protection program for the reservation

Naterbody Name	mpairment	Anticipated TMBL Submittal
Hamilton Lake, M I	Mercury	2011
Menominee River, M I	Mercury	2010
	PCBs fish Consumption Advisories	2010
Menominee River, M I	Path ogens	2009
Unnamed Tributary To Po- terfield Creek, MI	Nu trien ts	2009
	Agae	2009
Emily Lake, WI	Mercury fish Consumption Advisories	NA
Menominee R. In Marinette County, WI	fish Consumption Advisories	NA
Sand Lake TSS R1Se S21, W	Mercury fish Consumption Advisories	NA
Sealion Lake, WI	Mercury fish Consumption Advisories	NA
Van Zile Lake,,WI	Mercury fish Consumption Advisories	NA